JHU Physics & Astronomy

7 POWER IN PACKAGES | PythonWorkshop 2017

Lecturer: Mubdi Rahman




NOW, FOR SOME FUN!

We’ve been showing you how to do things in
Python that you could (for the most part) in many

other scripting /programming languages. Let’s show
you things that make Python great!



NOW, FOR SOME FUN!

We’'ve been showing you how to do things in
Python that you could (for the most part) in many

other scripting /programming languages. Let’s show
you things that make Python great!

PRO TIP:

In this section, we’'ll also be using

the astroquery package. You
should install this now using pip
or the package manager.




THE PANDAS IN THE ROOM

Pandas is a fully-featured data analysis library. This is well beyond the
scope of our workshop, but it allows a great deal of data mangling and
manipulation features. Particularly useful for pivot tables & timeseries.

pﬁpda UH{

Yit T Hi T €5

overview // get pandas // documentation // community // talks

Python Data Analysis Library VERSIONS
Release
pandas is an open source, BSD-licensed library providing high-performance, easy-to- 0.18.1 - May 2016
use data structures and data analysis tools for the Python programming language. download // docs /f pdf
pandas is a NUMFocus sponsored project. This will help ensure the success of Development
development of pandas as a world-class open-source project. 0.18.2 - July 2016
A Fiscally Sponsored Project of github /f docs
N U M F@ C U S Previous Releases
0.18.0 - download /f docs /I pdf
OPEN CODE = BETTER SCIENCE 0.17.1 - download /f docs ! pdf

0.17.0 - download // docs /I pdf
0.16.2 - download /f docs // pdf
. 0.16.1 - download /f docs /I pdf
0.18.1 Final (May 3, 2016) 0.16.0 - download # doos // pdf

http://pandas.pydata.org


http://pandas.pydata.org/

A QUICK PANDAS EXAMPLE

Quickly turning a two-dimensional dataset into a three-dimensional
dataset using a column to group on:

import pandas as pd

# Creating Random Data:
tmp_dates = pd.date_range(¢2015-10-29°,

periods= 100) # Date
tmp_cat = n.random.randint(l, 4, 100) # Category
tmp_data = n.random.randn(100) # Data

# Creating Pandas Dataframe:
dfl = pd.DataFrame(

{‘dates':tmp_dates, 'cat':tmp_cat, 'data':tmp_data}
)



A QUICK PANDAS EXAMPLE

# Now to group by category as well as date:
pdfl = dfl.pivot('dates', 'cat', 'data')

print(pdfl)

# Returns:

# cat 1 2 3
# dates

# 2015-10-29 0.515307 NaN NaN
# 2015-10-30 NaN ©0.163088 NaN
# 2015-10-31 0.972008 NaN NaN
# 2015-11-01 NaN -0.502585 NaN
# 2015-11-02 NaN 0.274932 NaN
# 2015-11-03 NaN ©.258800 NaN
# 2015-11-04 -1.579318 NaN NaN



WORLD COORDINATE SYSTEM

Typically, you need to know where on an image each pixel is in
astronomical coordinates (either RA & Dec, or maybe Galactic
Longitude and Latitude). This information (typically referred to as
WCS) is typically stored in the header of your FITS file. To use this
information, you can use the astropy.wcs module:

from astropy.wcs import WCS

# If you have a header object named ‘headl’ from
# either fits.getheader() or fits.open():
w = WCS(headl)

# Or just getting one from a file itself:
w = WCS(f7lename. fits)



FROM PIXELS TO COORDINATES

The wcs object contains functions that conversion from pixel to world
coordinates and vice versa:

# From pixel => world:
ra, dec = w.all_pix2world(xpx, ypx, 0)# Can be Llists

# The third parameter indicates if you’re starting
# from O (Python-standard) or 1 (FITS-standard)

# From world => pixel:
Xpx, ypx = w.all_world2pix(ra, dec, 0)



FROM PIXELS TO COORDINATES

The wcs object contains functions that conversion from pixel to world
coordinates and vice versa:

# From pixel => world:
ra, dec = w.all_pix2world(xpx, ypx, 0)# Can be Llists

# The third parameter indicates if you’re starting
# from 0 (Python-standard) or
PRO TIP:

# From world => pixel: _ Note that the order of the input
xpx, ypx = w.all_world2pix(ra, o ties .

ordering, and the opposite of
the FITS image read in.




PLOTTING A FITS IMAGE

It is important to note that most often, the pixels from the FITS image
are not perfectly aligned with the coordinate grid, and aren’t
necessarily the same size on sky throughout the image. In these cases,
it is critical to use pcolor (or pcolormesh) to get the orientations
correct.

If you want to use imshow, remember anything else you’d like to plot
should be converted into pixel coordinates through the
w.all_world2pix() function.

Next, we’ll run through plotting an image:



PLOTTING A FITS IMAGE

# Getting Data

imfile = fits.open(77lename)

header, im = imfile[0].header, imfile[0].data
w = WCS(header)

# Making Indices

XpX = np.arange(im.shape[1]+1)-0.5

ypX = np.arange(im.shape[0]+1)-0.5

xlist, ylist = np.meshgrid(xpx, ypx)

ralist, declist = w.all_pix2world(xlist, ylist, 0)

# Plotting
plt.pcolormesh(ralist, declist, im, vmin=m7in, vmax=max)



PLOTTING A FITS IMAGE

# Getting Data
imfile = fits.open(77lename)
header, im = imfile[0].header, imfile[0].data

w = WCS(header) \
# Making Indices

xpx = np.arange(im.shape[1]+1)-0.9@7-3i (sl We|| NI 1=
ypX = np.arange(im.shape[0]+1)-0.5

xlist, ylist = np.meshgrid(xpx, yg image and
ralist, declist = w.all_pix2world( header data

# Plotting
plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)



PLOTTING A FITS [MA

Making list of bin edges. Remember

there are N+1 bins. The coordinates
# Getting Data

imfile = fits.open(f7lename
header, im = imfile[0].head
w = WCS(header)

are defined on the centre of the pixel,
so the first bin edge is at -0.5.

# Making Indices

XpX = np.arange(im.shape[1]+1)-0.5
ypX = np.arange(im.shape[0]+1)-0.5
xlist, ylist = np.meshgrid(xpx, ypx)
ralist, declist = w.all_pix2world(xlist, ylist, 0)

# Plotting
plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)



| PLOTTING A FITS IMAGE

np.meshgrid() creates two, 2-D arrays filled with
# Getting Data the values in the two 1-D arrays you give it:
imfile = fits.open(

header, im = imfile[ L 1.2 4
w = WCS(header) np.mes[§t1(2:|]([ ’[3],’?5)’ 1)

[1, 2], [4, 4]

# Making Indices
XpX = np.arange(im.shap
ypX = np.arange(im.shape[0]+1)- @ 5

xlist, ylist = np.meshgrid(xpx, ypx)
ralist, declist = w.all_pix2world(xlist, ylist, 0)

# Plotting
plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)



PLOTTING A FITS IMAGE

# Getting Data

imfile = fits.open(77lename) Converting the indices
header, im = imfile[0].header, NN - WAL IR Il
w = WCS(header) values in the lists.

# Making Indices

XpX = np.arange(im.shape[1]+1)-0.5
ypX = np.arange(im.shape[0]+1)-0.5
xlist, ylist = np.meshgrid(xpx, ypx)
ralist, declist = w.all_pix2world(xlist, ylist, 0)

# Plotting
plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)



PLOTTING A FITS IMAGE

Final Plot

# Getting Data

imfile = fits.open(77lename)
header, im = imfile[0].header, im
w = WCS(header)

# Making Indices
XpX = np.arange(im.shape[1l]+1)-0.
ypX = np.arange(im.shape[0]+1)-0.

xlist, ylist = np.meshgrid(xpx, V

ralist, declist = w.all p1x2worlolh_\|°|

# Plotting

0.0p =ta0et

07 " L . " " "
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
+2.7467e2

A=l |

plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)



PLOTTING A FITS IMAGE

Final Plot

# Getting Data

imfile = fits.open(77lename)
header, im = imfile[0].header, im
w = WCS(header)

# Making Indices
XpX = np.arange(im.shape[1l]+1)-0.

ypX = np.arange(im.shape[0]+1)-0
xlist, ylist = np.meshgrid(xpx,
ralist, declist = w.all_pix2wor:

# Plotting
plt.pcolormesh(ralist, declist,

—1.38e1




COORDINATE TRANSFORMATIONS

Astropy provides a way of dealing with coordinates, and
automatically deal with conversions:

from astropy.coordinates import SkyCoord

# Making Coordinates:

cl = SkyCoord(ra, dec, frame=‘icrs’, unit=‘deg’)
c2 = SkyCoord(l, b, frame=‘galactic’, unit=‘deg’)
c3 = SkyCoord(’00h12m30s’, ‘+42d12m0Os’)

# Printing and Conversions:

cl.ra, cl.dec, cl.ra.hour, c2.ra.hms, c3.dec.dms
c2.fk5, cl.galactic # Converting Coordinates
c2.to_string(‘decimal’), cl.to_string(‘hmsdms’)



PHYSICAL UNITS

Astropy provides a way to manipulate quantities, automatically taking
care of unit conversions automatically:

from astropy import units as u

# Defining Quantities with units:
vall, val2 = 30.2 * u.cm, 2.2E4 * u.s
val3 = vall/val2 # Will be units cm / s

# Converting Units
val3km = val3.to(u.km/u.s)

# Simplifying Units
val4 = (10.3 x u.s / (3 * u.Hz)).decompose()



PHYSICAL/ASTRONOMICAL CONSTANTS

Astropy also provides constants (with units):

from astropy import constants as c

# Some constants
c.k_ B, c.c, c.M_sun, c.L_sun

# Can use with units
energy = c.h x 30 * u.Ghz

# Can convert units
mass = (3.2E13 *x u.kg).to(c.M_sun)



ASTRONOMICAL QUERYING

@) Astroquery — astroguer X ar

€ > 0

astroquery v0.3.1.dev3087 »

Page Contents

Astroquery
* Introduction
* Installation
+ Requirements
+ Using astroquery
Available Services
Catalog, Archive, and Other
« Catalogs
= Archives
+ Simulations
* Other
+ Developer documentation

astrop @

next »

Astroquery
This is the documentation for the Astroquery affiliated package of astropy.

Code and issue tracker are on GitHub.

Introduction

Astroquery is a set of tools for querying astronomical web forms and databases.

There are two other packages with complimentary functionality as Astroquery: astropy.vo is in the
Astropy core and pyvo is an Astropy affiliated package. They are more oriented to general virtual
observatory discovery and queries, whereas Astroquery has web service specific interfaces.

Check out the A Gallery of Queries for some nice examples.

Installation

Astroquery allows
access to online
databases of various
sources.

The documentation is
located:

http: //astroquery.read

thedocs.org/en/latest/

The latest version of astroquery can be pip installed:

$ pip install astroquery

and the ‘bleeding edge’ master version:

5 pip install https://github.com/astropy/astroquery/archive/master.zip

or cloned and installed from source:

# If you have a github account:
$ git clone git@github.com:astropy/astroquery.git

# If you do not:



http://astroquery.readthedocs.org/en/latest/

ASTRONOMICAL QUERYING

There are lots of possible databases to query, but as a quick example
(from Simbad):

from astroquery.simbad import Simbad

# Simbad
s = Simbad()

# Table of Matching Objects
tabl = s.query_object(‘M31’)

# Printing Table
tabl.pprint()



ASTRONOMICAL QUERYING

There are lots of possible databases to query, but as a quick example
(from Simbad):

from astroquery.simbad import Simbad

# Simbad
s = Simbad()

# Searching on Region

cl = SkyCoord(298.4, -0.4, frame=‘galactic’,
unit=‘deg’)

tabl = s.query_region(cl, radius=1*u.deg)

# Printing Table
tabl.pprint()



| MPLD3: MATPLOTLIB IN YOUR BROWSER

B Yahoo! Mail B ADS ' Save to Mendeley E@-w&w & astro-ph: Cosmology

g |55
ge

200+ &

Matplotlib Figure D3.js Webpage



MPLD3: MATPLOTLIB IN YOUR BROWSER

While not every matplotlib function is supported, it is easy to export
your plot into an interactive HTML-based plot:

import mpld3

# If you have a figure already defined: figl
mpld3.save_html(figl, 77lename)

# Or if you do not have a variable for your figure
mpld3.save_html(plt.gcf(), 77lename)



PLAY TIME]D | Toretvoumsory for

breaking your heart.




