
4. BASIC PLOTTING

JHU Physics & Astronomy

Python Workshop 2017

Lecturer: Mubdi Rahman

INTRODUCING MATPLOTLIB!

Very powerful plotting package.

The Docs: http://matplotlib.org/api/pyplot_api.html

http://matplotlib.org/api/pyplot_api.html

GETTING STARTED WITH MATPLOTLIB

Matplotlib has multiple ways of interfacing with it, as well as a large
number of additional modules and patches that extend its capabilities
significantly. The main interface we’ll be using for this work is the
pyplot interface:

import matplotlib.pyplot as plt

You can choose to run matplotlib either interactively or non-
interactively. For the interactive mode, the plot gets updated as you
go along. For non-interactive, the plot doesn’t show up until you’ve
finished everything. To switch between the two:

plt.ion() # Turn interactive mode on
plt.ioff() # Turn interactive mode off
plt.show() # Show the plot when interactive mode off

GETTING STARTED WITH MATPLOTLIB

Matplotlib has multiple ways of interfacing with it, as well as a large
number of additional modules and patches that extend its capabilities
significantly. The main interface we’ll be using for this work is the
pyplot interface:

import matplotlib.pyplot as plt

You can choose to run matplotlib either interactively or non-
interactively. For the interactive mode, the plot gets updated as you
go along. For non-interactive, the plot doesn’t show up until you’ve
finished everything. To switch between the two:

plt.ion() # Turn interactive mode on
plt.ioff() # Turn interactive mode off
plt.show() # Show the plot when interactive mode off

I started using python back in the “Wild

West” days. Some of the defaults of how I

code are not the standards suggested

today. In particular, I import

matplotlib.pyplot as p. Call me on this!

GETTING STARTED WITH MATPLOTLIB

Matplotlib has multiple ways of interfacing with it, as well as a large
number of additional modules and patches that extend its capabilities
significantly. The main interface we’ll be using for this work is the
pyplot interface:

import matplotlib.pyplot as plt

You can choose to run matplotlib either interactively or non-
interactively. For the interactive mode, the plot gets updated as you
go along. For non-interactive, the plot doesn’t show up until you’ve
finished everything. To switch between the two:

plt.ion() # Turn interactive mode on
plt.ioff() # Turn interactive mode off
plt.show() # Show the plot when interactive mode off

If you are in a situation where you can’t

display a plot or don’t have the ability

(i.e., ssh-ing without Xforwarding, running

on a webserver), do the following before

importing pyplot:

import matplotlib
matplotlib.use(‘Agg’)

GETTING STARTED WITH MATPLOTLIB

Matplotlib has multiple ways of interfacing with it, as well as a large
number of additional modules and patches that extend its capabilities
significantly. The main interface we’ll be using for this work is the
pyplot interface:

import matplotlib.pyplot as plt

You can choose to run matplotlib either interactively or non-
interactively. For the interactive mode, the plot gets updated as you
go along. For non-interactive, the plot doesn’t show up until you’ve
finished everything. To switch between the two:

plt.ion() # Turn interactive mode on
plt.ioff() # Turn interactive mode off
plt.show() # Show the plot when interactive mode off

If you are using an jupyter notebook,

you can make the plots appear inline in

the notebook if you use the magic

function:

%matplotlib inline

If you don’t, the plots will show up in a

popup window as with the other

methods.

CHOOSE YOUR OWN ADVENTURE!

Pyplot

Convenience

Functions

Individual

Elements

• Really simple to start

• Not as much flexibility

• Requires more coding

• Can plot anything!

SIMPLE PLOTTING BASICS

Much of your power is in
the plot command:

The simplest of
plots
plt.plot(x, y)

SIMPLE PLOTTING BASICS

Much of your power is in
the plot command:

The simplest of
plots
plt.plot(x, y)

Actually, with matplotlib

version 2 or greater, it will

look more like this

SIMPLE PLOTTING BASICS

Much of your power is in
the plot command:

plt.plot(x, y,
linewidth=3)

SIMPLE PLOTTING BASICS

Much of your power is in
the plot command:

plt.plot(x, y,
linewidth=3,
linestyle=‘dashed’)

SIMPLE PLOTTING BASICS

Much of your power is in
the plot command:

plt.plot(x, y,
linewidth=3,
linestyle=‘dashed’,
color=‘k’)

SIMPLE PLOTTING BASICS

Much of your power is in
the plot command:

plt.plot(x, y,
linestyle=‘none’,
color=‘k’,
marker=‘*’)

SIMPLE PLOTTING BASICS

Much of your power is in
the plot command:

plt.plot(x, y,
linestyle=‘none’,
color=‘k’,
marker=‘$\\beta$’,
markersize=10)

SIMPLE PLOTTING BASICS

Much of your power is in
the plot command:

plt.plot(x, y,
linestyle=‘none’,
color=‘k’,
marker=‘$\\beta$’,
markersize=10)

For a scatter plot, use

plt.scatter() instead

SIMPLE PLOTTING BASICS

Creating error bars:

plt.errorbar(x, y,
yerr=yerr)

SIMPLE PLOTTING BASICS

Creating error bars:

plt.errorbar(x, y,
yerr=yerr, fmt=‘*’)

SIMPLE PLOTTING BASICS

Creating error bars:

plt.errorbar(x, y,
yerr=yerr,
fmt=‘none’)

SIMPLE PLOTTING BASICS

Creating error bars:

plt.errorbar(x, y,
yerr=yerr,
fmt=‘none’)

All of these functions have

many more options. Check

the docs.

COLOURS IN MATPLOTLIB

In matplotlib, colours can be specified in a number of ways:

Basic Colours
Most basic (primary

and secondary)

colours can be quoted

by their first letter:

‘b’ – blue

‘r’ – red

‘g’ – green

‘y’ – yellow

‘w’ – white

‘k’ – black

HTML Colours
Any defined HTML

colour name is a valid

colour:

“deeppink”

“slateblue”

“ivory”

“lemonchiffon”

Hex code
Any string of hex

codes in the form of

“#rrggbb” where

each pair goes from

00 to ff:

“#ffffff”

“#000000”

“#ff0000”

“#ff00ff”

ANATOMY OF A PLOT WINDOW

ANATOMY OF A PLOT WINDOW

Figure

ANATOMY OF A PLOT WINDOW

Axis

ANATOMY OF A PLOT WINDOW

ylabel

xlabel

title

ANATOMY OF A PLOT WINDOW

ylim

xlim

yscale

xscale

yticks

xticks

HOUSEKEEPING FUNCTIONS

To deal with the various figures and axes that there can be, you have
the following housekeeping functions:

Clearing Plots
plt.cla() # Clear Current Axis
plt.clf() # Clear Current Figure

Getting active objects
ax1 = plt.gca() # Get Current Axis
fig1 = plt.gcf() # Get Current Figure

Make new figure
plt.figure() # Make new figure (with defaults)
plt.figure(figsize=(6,8)) # Make new figure (6”x8”)

SETTING AXIS PROPERTIES

You can (at any time in the plotting) change the range (lim), scale (log
or linear), labels or ticks on a plot. Replace x with y (or vice versa)
when necessary:

Limits and Scale
plt.xlim([0, 5]) # Set x-limits to 0 -> 5
plt.yscale(‘log’) # Set y-axis to logarithmic

Setting Labels
plt.xlabel(‘X-axis’) # Label the X-axis
plt.title(“Title”) # Set the Axis title

Setting Ticks
plt.xticks([0, 4, 10, 19]) # Location of x-ticks

LABELS AND LEGENDS (OH MY!)

You can use “labels” on any
plot object to automatically
populate a legend:

plt.errorbar(…,
label=“Test Data”)

plt.legend()

LABELS AND LEGENDS (OH MY!)

You can use “labels” on any
plot object to automatically
populate a legend:

plt.errorbar(…,
label=“Test Data”)

plt.legend(
frameon=False
)

SAVING A FIGURE

Saving a figure is a one-line operation. Matplotlib will figure out what
format you want by the extension of the filename:

plt.savefig(“filename.pdf”) # Saving as a PDF
plt.savefig(“filename.png”) # Saving as a PNG
plt.savefig(“filename.eps”) # Saving as an EPS

Can also determine what output DPI:
plt.savefig(“filename.jpg”, dpi=300)

SAVING A FIGURE

Saving a figure is a one-line operation. Matplotlib will figure out what
format you want by the extension of the filename:

plt.savefig(“filename.pdf”) # Saving as a PDF
plt.savefig(“filename.png”) # Saving as a PNG
plt.savefig(“filename.eps”) # Saving as an EPS

Can also determine what output DPI:
plt.savefig(“filename.jpg”, dpi=300)

EPS files do not support

transparency natively

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

fig1 = plt.figure()
ax1 = fig1.add_axes([0.1, 0.1, 0.8, 0.8])

ax1.plot(x, y, marker=‘o’, label=‘plotted line’)
ax1.legend()

ax1.set_xlim([1, 10])
ax1.set_ylim([0, 5])

ax1.set_xscale(‘log’)
ax1.set_xtitle(‘X Label’)
ax1.set_ytitle(‘Y Label’)
fig1.savefig(filename)

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

fig1 = plt.figure()
ax1 = fig1.add_axes([0.1, 0.1, 0.8, 0.8])

ax1.plot(x, y, marker=‘o’, label=‘plotted line’)
ax1.legend()

ax1.set_xlim([1, 10])
ax1.set_ylim([0, 5])

ax1.set_xscale(‘log’)
ax1.set_xtitle(‘X Label’)
ax1.set_ytitle(‘Y Label’)
fig1.savefig(filename)

This uses matplotlib’s location format,

which takes the format of:

[left, bottom, width, height]
where each of the numbers are from 0 to

1 (in units of a fraction of the figure)

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

fig1 = plt.figure()
ax1 = fig1.add_axes([0.1, 0.1, 0.8, 0.8])

ax1.plot(x, y, marker=‘o’, label=‘plotted line’)
ax1.legend()

ax1.set_xlim([1, 10])
ax1.set_ylim([0, 5])

ax1.set_xscale(‘log’)
ax1.set_xtitle(‘X Label’)
ax1.set_ytitle(‘Y Label’)
fig1.savefig(filename)

All of those major plotting functions (i.e,

plot, scatter, legend, et cetera) are now

just methods on the axis.

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

fig1 = plt.figure()
ax1 = fig1.add_axes([0.1, 0.1, 0.8, 0.8])

ax1.plot(x, y, marker=‘o’, label=‘plotted line’)
ax1.legend()

ax1.set_xlim([1, 10])
ax1.set_ylim([0, 5])

ax1.set_xscale(‘log’)
ax1.set_xtitle(‘X Label’)
ax1.set_ytitle(‘Y Label’)
fig1.savefig(filename)

All axis properties (i.e., x/ylim, x/yscale)

can be set by the methods

axis.set_property. Also, you can get the

current values for these by

axis.get_property.

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

fig1 = plt.figure()
ax1 = fig1.add_axes([0.1, 0.1, 0.8, 0.8])

ax1.plot(x, y, marker=‘o’, label=‘plotted line’)
ax1.legend()

ax1.set_xlim([1, 10])
ax1.set_ylim([0, 5])

ax1.set_xscale(‘log’)
ax1.set_xtitle(‘X Label’)
ax1.set_ytitle(‘Y Label’)
fig1.savefig(filename)

Saving the figure is a method of the

figure itself

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

fig1 = plt.figure()
ax1 = fig1.add_axes([0.1, 0.1, 0.8, 0.8])

ax1.plot(x, y, marker=‘o’, label=‘plotted line’)
ax1.legend()

ax1.set_xlim([1, 10])
ax1.set_ylim([0, 5])

ax1.set_xscale(‘log’)
ax1.set_xtitle(‘X Label’)
ax1.set_ytitle(‘Y Label’)
fig1.savefig(filename)

This is particularly useful if

you have multiple figures and

axes.

CUSTOMIZING DEFAULTS

There’s a lot of different parameters that matplotlib chooses by
default, but you can set your own using a matplotlibrc file. This file
will not exist by default, but you can download a sample one here:

http://matplotlib.org/_static/matplotlibrc

The place to put this file depends on your platform:

Windows: UserDirectory/.matplotlib/matplotlibrc
(i.e., C:/Users/username/.matplotlib/matplotlibrc)

MacOS: UserDirectory/.matplotlib/matplotlibrc
(i.e., Users/username/.matplotlib/matplotlibrc)

Linux: UserDirectory/.config/matplotlib/matplotlibrc
(i.e., /home/username/.config/matplotlib/matplotlibrc)

http://matplotlib.org/_static/matplotlibrc

CUSTOMIZING DEFAULTS

There’s a lot of different parameters that matplotlib chooses by
default, but you can set your own using a matplotlibrc file. This file
will not exist by default, but you can download a sample one here:

http://matplotlib.org/_static/matplotlibrc

The place to put this file depends on your platform:

Windows: UserDirectory/.matplotlib/matplotlibrc
(i.e., C:/Users/username/.matplotlib/matplotlibrc)

MacOS: UserDirectory/.matplotlib/matplotlibrc
(i.e., Users/username/.matplotlib/matplotlibrc)

Linux: UserDirectory/.config/matplotlib/matplotlibrc
(i.e., /home/username/.config/matplotlib/matplotlibrc)

The default matplotlib font is

a crime against typography.

Change it as soon as you can.

If you want to replace it with

an open source font, may I

suggest either Open Sans or

Source Sans Pro?

http://matplotlib.org/_static/matplotlibrc

EXERCISE TIME! But when I call you never

seem to be home.

