JHU Physics & Astronomy
Python Workshop 2017

4. BASIC PLOTTING

Lecturer: Mubdi Rahman

INTRODUCING MATPLOTLIB!

matplotlib: python plottin %

= m] X
€« C' [\ matplotlib.org/index.html Qv O =
I Yahoo! Mail n ADS Save to Mendeley Q astro-ph: Galaxy E astro-ph: Cosmology @} Baltimore Weather -... ¢ Environment Canada (@ Fstoppers | Video Bl... 15 smitten kitchen » [Other bookmarks

home | examples | gallery | pyplot| docs »

modules | index
Introduction .
o
matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and
. . g ’ ” ¢ . Enter search terms or a module, class
interactive environments across platforms. matplotlib can be used in python scripts, the python and ipython shell (ala Sl
or function name.
MATLAB®" or Mathematica®), web application servers, and six graphical user interface toolkits.

10 11 12 13 14 13 16 17

matplotlib tries to make easy things easy and hard things possible. You can generate plots, histograms, power spectra, bar

charts, errorcharts, scatterplots, etc, with just a few lines of code. For a sampling, see the screenshots, thumbnail gallery, and
examples directory

For simple plotting the pyplot interface provides a MATLAB-like interface, particularly when combined with IPython. For the

power user, you have full control of line styles, font properties, axes properties, etc, via an object oriented interface or via a set
of functions familiar to MATLAB users.

Very powerful plotting package.
The Docs: http: //matplotlib.org /api/pyplot api.html

http://matplotlib.org/api/pyplot_api.html

GETTING STARTED WITH MATPLOTLIB

Matplotlib has multiple ways of interfacing with it, as well as a large
number of additional modules and patches that extend its capabilities
significantly. The main interface we’ll be using for this work is the
pyplot interface:

import matplotlib.pyplot as plt

You can choose to run matplotlib either interactively or non-
interactively. For the interactive mode, the plot gets updated as you
go along. For non-interactive, the plot doesn’t show up until you've
finished everything. To switch between the two:

plt.ion() # Turn interactive mode on
plt.ioff() # Turn interactive mode off
plt.show() # Show the plot when interactive mode off

GETTING STARTED WITH MATPLOTLIB

Matplotlib has multiple ways of interfacing with it, as well as a large
number of additional modules and patches that extend its capabilities
significantly. The main interface we’ll be using for this work is the
pyplot interface:

import matplotlib.pyplot as plt

You can choose to run matplotlib either interactively or non-
interactively. For the interactive

go along. For non-interactive, the MUBDI IS A BONEHEAD NOTE:
finished everything. To switch bet o/ Chi o S Se e e
West” days. Some of the defaults of how |
code are not the standards suggested

today. In particular, | import
matplotlib.pyplot as p. Call me on this!

plt.ion() # Turn interact
plt.ioff() # Turn interac
plt.show() # Show the plc

GETTING STARTED WITH MATPLOTLIB

Matplotlib has multiple ways of interfacing with it, as well as a large
number of additional modules and patches that extend its capabilities
significantly. The main interface we’ll be using for this work is the
pyplot interface:

PRO TIP:

If you are in a situation where you can'’t
display a plot or don’t have the ability
(i.e., ssh-ing without Xforwarding, running
on a webserver), do the following before

importing pyplot:

import matplotlib.pyplc

You can choose to run matplo
interactively. For the interacti
go along. For non-interactive,
finished everything. To switch

plt.ion() # Turn inter:
plt.ioff() # Turn -inte import matplotlib
plt.show() # Show the PEENIERdNNe RN MVEINEN.V-3-40

GETTING STARTED WITH MATPLOTLIB

Matplotlib has multiple ways of interfacing with it, as well as a large
number of additional modules and pa’rches that ex’rend its CCIpCIbI|I1'IeS
significantly. The main interface we’

pyplot interface: PRO TIP 2
import matplotlib.pyplc

If you are using an jupyter notebook,

You can choose to run matplot. 4 it make the plots appear inline in

interactively. For the interacti the notebook if you use the magic

go along. For non-interactive, function:

finished everything. To switch
%matplotlib inline

plt.ion() # Turn inter:

plt.ioff() # Turn inte

If you don’t, the plots will show up in a
plt.show() # Show the |

popup window as with the other
methods.

CHOOSE YOUR OWN ADVENTURE!

Convenience Individual
: CE—
Functions Elements

* Really simple to start * Requires more coding

* Not as much flexibility * Can plot anything!

SIMPLE PLOTTING BASICS

Much of your power is in
the plot command:

The simplest of
plots
plt.plot(x, y)

74 Figure 1

plo[o+ & @

SIMPLE PLOTTING BASICS

Much of your power is in

the plot command: 100

0.75 1

The simplest of
plots 20
plt.plot(x, y) 0.251

0.00 1
-0.25 1

-0.50 A

-0.75 1

PRO TIP: h

Actually, with matplotlib

version 2 or greater, it will
look more like this

SIMPLE PLOTTING BASICS

74 Figure 1

Much of your power is in
the plot command:

plt.plot(x, vy,
linewidth=3)

plo[o+ & @

SIMPLE PLOTTING BASICS

74 Figure 1

Much of your power is in
the plot command:

plt.plot(x, vy,
Llinewidth=3,
linestyle=‘dashed’)

plo[o+ & @

SIMPLE PLOTTING BASICS

74 Figure 1

Much of your power is in
the plot command:

plt.plot(x, vy,
Llinewidth=3,
linestyle=‘dashed’,
color=¢‘k?)

plolo/+ &

SIMPLE PLOTTING BASICS

74 Figure 1

Much of your power is in
the plot command:

plt.plot(x, vy,
linestyle=‘none’,
color=¢k’,
marker=¢x’)

200

SIMPLE PLOTTING BASICS

74 Figure 1

Much of your power is in
the plot command:

plt.plot(x, vy,
linestyle=‘none’,
color=¢k’,
marker=¢$\\beta$’,
markersize=10)

200

SIMPLE PLOTTING BASICS

74 Figure 1 — O X

Much of your power is in
the plot command:

plt.plot(x, vy,
linestyle=‘none’,
color=¢k’,
marker=¢$\\beta$’,
markersize=10)

PRO TIP:

For a scatter plot, use

plt.scatter() instead

SIMPLE PLOTTING BASICS

Creating error bars:

plt.errorbar(x, vy,
yerr=yerr)

oo+ & @

SIMPLE PLOTTING BASICS

Cre r ba
plt. bar (x
yer , fm)

oo+ & @

SIMPLE PLOTTING BASICS

yerr=yerr,

oo+ & @

SIMPLE PLOTTING BASICS

Creating error bars:

plt.errorbar(x, vy,
yerr=yerr,
fmt=‘none?’)

PRO TIP:

All of these functions have oo+ =&

many more options. Check
the docs.

| COLOURS IN MATPLOTLIB

In matplotlib, colours can be specified in a number of ways:

Basic Colours
Most basic (primary

and secondary)
colours can be quoted
by their first letter:
‘b’ — blue
‘r' —red
‘g’ — green
‘v’ — yellow
‘w’ — white

‘k’ — black

HTML Colours
Any defined HTML
colour name is a valid
colour:

“deeppink”
“slateblue”
“ivory”
“lemonchiffon”

Hex code
Any string of hex
codes in the form of
“Hrrggbb” where
each pair goes from

00 fo ff:
HEFFEEE”
“#000000"
“#££0000”
“HEFOOFF”

ANATOMY OF A PLOT WINDOW

plolo+]- | BE

| ANATOMY OF A PLOT WINDOW

Axis

ANATOMY OF A PLOT WINDOW

ANATOMY OF A PLOT WINDOW

title

ylabel

ﬁlolol’l‘l@l Elﬂ xlabel

ANATOMY OF A PLOT WINDOW

HOUSEKEEPING FUNCTIONS

To deal with the various figures and axes that there can be, you have
the following housekeeping functions:

Clearing Plots
plt.cla() # Clear Current Axis
plt.clf() # Clear Current Figure

Getting active objects
axl = plt.gca() # Get Current Axis
figl = plt.gcf() # Get Current Figure

Make new figure
plt.figure() # Make new figure (with defaults)
plt.figure(figsize=(6,8)) # Make new figure (6”x8”)

SETTING AXIS PROPERTIES

You can (at any time in the plotting) change the range (lim), scale (log
or linear), labels or ticks on a plot. Replace x with y (or vice versa)
when necessary:

Limits and Scale
plt.xlim([0, 5]) # Set x-limits to 0 -> 5
plt.yscale(‘log’) # Set y-axis to logarithmic

Setting Labels
plt.xlabel(‘X-axis’) # Label the X-axis
plt.title(“Title”) # Set the Axis title

Setting Ticks
plt.xticks([0, 4, 10, 19]) # Location of x-ticks

LABELS AND LEGENDS (OH MY!)

You can use “labels” on any
plot object to automatically
populate a legend:

plt.errorbar(..,
label=“Test Data”)

plt.legend()

74 Figure 1

LABELS AND LEGENDS (OH MY!)

You can use “labels” on any
plot object to automatically
populate a legend:

plt.errorbar(..,
label=“Test Data”)

plt.legend(
frameon=False

)

SAVING A FIGURE

Saving a figure is a one-line operation. Matplotlib will figure out what
format you want by the extension of the filename:

plt.savefig(“filename.pdf”) # Saving as a PDF
plt.savefig(“filename.png”) # Saving as a PNG
plt.savefig(“filename.eps”) # Saving as an EPS

Can also determine what output DPI:
plt.savefig(“filename.jpg”, dpi=300)

SAVING A FIGURE

Saving a figure is a one-line operation. Matplotlib will figure out what
format you want by the extension of the filename:

plt.savefig(“filename.pdf”) # Saving as a PDF
plt.savefig(“filename.png”) # Saving as a PNG
plt.savefig(“filename.eps”) # Saving as an EPS

Can also determine what output_DP
plt.savefig(“filename.jpg”, dpi PRO TIP-

EPS files do not support

transparency natively

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

figl = plt.figure()
axl = figl.add_axes([0.1, 0.1, 0.8, 0.8])

axl.plot(x, y, marker=¢‘o’, label=‘plotted line’)
axl.legend()

axl.set_xlim([1, 10])
axl.set_ylim([0, 5])

axl.set_xscale(‘log’)
axl.set_xtitle(‘X Label’)
axl.set_ytitle(‘Y Label’)
figl.savefig(r7lename)

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

figl = plt.figure()
axl = figl.add_axes([0.1, 0.1, 0.8, 0.8])

axl.plot(x, y, marker=‘o’, labe@‘plotted line’)

axl.legend()

axl.set_xlim([1l, 10]) This uses matplotlib’s location format,
axl.set_ylim([0, 5]) which takes the format of:

[left, bottom, width, height]
axl.set_xscale(‘log’) where each of the numbers are from O to

axl.set_xtitle(‘X Label’) 1 (in units of a fraction of the figure)
axl.set_ytitle(‘Y Label’)

figl.savefig(f7lename)

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

figl = plt.figure()
axl = figl.add_axes([0.1, 0.1, 0.8, 0.8])

axl.plot(x, y, marker=¢‘o’, label=‘plotted line’)

axl.legend() \
i 10])

axl.set_xlim([1,
axl.set_ylim([0, 5])

axl.set_xscale(‘log’)

axl.set_xtitle(‘X Label’)
axl.set_ytitle(‘Y Label’)
figl.savefig(r7lename)

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

figl = plt.figure()
axl = figl.add_axes([0.1, 0.1, 0.8, 0.8])

axl.plot(x, y, marker=¢‘o’, label=‘plotted line’)
axl.legend()

i e, BTy S
. _y ’ ’ can be set by the methods

axis.set_property. Also, you can get the
current values for these by

axl.set_xscale(‘log’)
axl.set_xtitle(‘X Label?)
axl.set_ytitle(‘Y Label’)
figl.savefig(r7lename)

axis.get_property.

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

figl = plt.figure()
axl = figl.add_axes([0.1, 0.1, 0.8, 0.8])

axl.plot(x, y, marker=¢‘o’, label=‘plotted line’)
axl.legend()

axl.set_xlim([1, 10])
axl.set_ylim([0, 5])

axl.set_xscale(‘log’)

axl.set_xtitle(‘X Label’)
axl.set_ytitle(‘Y Label’

)
figl.savefig(7r7lename) ?

BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

figl = plt.figure()
axl = figl.add_axes([0.1, 0.1, 0.8, 0.8])

axl.plot(x, y, marker=¢‘o’, label=‘plotted line’)
axl.legend()

axl.set_xlim([1l, 10])

axl.set_ylim([0, 5]) PRO TIP-
axl.set_xscale(‘log’) This is particularly useful if
axl.set_xtitle(‘X Label’) you have multiple figures and

axl.set_ytitle(‘Y Label’)
figl.savefig(f7lename)

axes.

CUSTOMIZING DEFAULTS

There’s a lot of different parameters that matplotlib chooses by
default, but you can set your own using a matplotlibre file. This file
will not exist by default, but you can download a sample one here:

http: //matplotlib.org/ static/matplotlibre

The place to put this file depends on your platform:

Windows: UserDirectory /.matplotlib /matplotlibre
(i.e., C:/Users/username /.matplotlib /matplotlibre)

MacOS: UserDirectory /.matplotlib /matplotlibre
(i.e., Users/username /.matplotlib /matplotlibre)

Linux: UserDirectory/.config/matplotlib /matplotlibre
(i.e., /home /username /.config /matplotlib /matplotlibrc)

http://matplotlib.org/_static/matplotlibrc

CUSTOMIZING DEFAULTS

There’s a lot of different parameters that matplotlib chooses b
default, but you can set your own using a ma
will not exist by default, but you can downlc PRO TIP:

http: //matplotlib.org/ static/matplotlibre The default matplotlib font is
a crime against typography.

The place to put this file depends on your p Change it as soon as you can

Windows: UserDirectory /.matplotlib /matplc
(i.e., C:/Users/username/.matplotlib /matplo 11 e lin e el fele =i
an open source font, may |
suggest either Open Sans or
Source Sans Pro?

MacOS: UserDirectory /.matplotlib /matplotli
(i.e., Users/username /.matplotlib /matplotlib

Linux: UserDirectory/.config /matplotlib /mat}.
(i.e., /home /username/.config /matplotlib /matplotlibre

http://matplotlib.org/_static/matplotlibrc

EXERCISE TlME| But when I call you never

seem to be home.

