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INTRODUCING MATPLOTLIB!

matplotlib: python plottin %

= m] X
€« C' [\ matplotlib.org/index.html Qv O =
I Yahoo! Mail n ADS Save to Mendeley Q astro-ph: Galaxy E astro-ph: Cosmology @} Baltimore Weather -... ¢ Environment Canada (@ Fstoppers | Video Bl... 15 smitten kitchen » [ Other bookmarks

home | examples | gallery | pyplot| docs »

modules | index
Introduction .
o
matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and
. . g ’ ” ¢ . Enter search terms or a module, class
interactive environments across platforms. matplotlib can be used in python scripts, the python and ipython shell (ala Sl
or function name.
MATLAB®" or Mathematica®), web application servers, and six graphical user interface toolkits.
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matplotlib tries to make easy things easy and hard things possible. You can generate plots, histograms, power spectra, bar

charts, errorcharts, scatterplots, etc, with just a few lines of code. For a sampling, see the screenshots, thumbnail gallery, and
examples directory

For simple plotting the pyplot interface provides a MATLAB-like interface, particularly when combined with IPython. For the

power user, you have full control of line styles, font properties, axes properties, etc, via an object oriented interface or via a set
of functions familiar to MATLAB users.

Very powerful plotting package.
The Docs: http: //matplotlib.org /api/pyplot api.html



http://matplotlib.org/api/pyplot_api.html

GETTING STARTED WITH MATPLOTLIB

Matplotlib has multiple ways of interfacing with it, as well as a large
number of additional modules and patches that extend its capabilities
significantly. The main interface we’ll be using for this work is the
pyplot interface:

import matplotlib.pyplot as plt

You can choose to run matplotlib either interactively or non-
interactively. For the interactive mode, the plot gets updated as you
go along. For non-interactive, the plot doesn’t show up until you've
finished everything. To switch between the two:

plt.ion() # Turn interactive mode on
plt.ioff() # Turn interactive mode off
plt.show() # Show the plot when interactive mode off
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GETTING STARTED WITH MATPLOTLIB

Matplotlib has multiple ways of interfacing with it, as well as a large
number of additional modules and patches that extend its capabilities
significantly. The main interface we’ll be using for this work is the
pyplot interface:

PRO TIP:

If you are in a situation where you can'’t
display a plot or don’t have the ability
(i.e., ssh-ing without Xforwarding, running
on a webserver), do the following before

importing pyplot:

import matplotlib.pyplc

You can choose to run matplo
interactively. For the interacti
go along. For non-interactive,
finished everything. To switch
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GETTING STARTED WITH MATPLOTLIB

Matplotlib has multiple ways of interfacing with it, as well as a large
number of additional modules and pa’rches that ex’rend its CCIpCIbI|I1'IeS
significantly. The main interface we’

pyplot interface: PRO TIP 2
import matplotlib.pyplc

If you are using an jupyter notebook,

You can choose to run matplot. 4 it make the plots appear inline in

interactively. For the interacti the notebook if you use the magic

go along. For non-interactive, function:

finished everything. To switch
%matplotlib inline

plt.ion() # Turn inter:

plt.ioff() # Turn inte

If you don’t, the plots will show up in a
plt.show() # Show the |

popup window as with the other
methods.



CHOOSE YOUR OWN ADVENTURE!

Convenience Individual
: CE—
Functions Elements

* Really simple to start * Requires more coding

* Not as much flexibility * Can plot anything!



SIMPLE PLOTTING BASICS

Much of your power is in
the plot command:

# The simplest of
# plots
plt.plot(x, y)

74 Figure 1
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SIMPLE PLOTTING BASICS

Much of your power is in

the plot command: 100
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# The simplest of
# plots 20
plt.plot(x, y) 0.251

0.00 1
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PRO TIP: h

Actually, with matplotlib

version 2 or greater, it will
look more like this




SIMPLE PLOTTING BASICS

74 Figure 1

Much of your power is in
the plot command:

plt.plot(x, vy,
linewidth=3)

plo[o+ & @




SIMPLE PLOTTING BASICS

74 Figure 1

Much of your power is in
the plot command:

plt.plot(x, vy,
Llinewidth=3,
linestyle=‘dashed’)

plo[o+ & @




SIMPLE PLOTTING BASICS

74 Figure 1

Much of your power is in
the plot command:

plt.plot(x, vy,
Llinewidth=3,
linestyle=‘dashed’,
color=¢‘k?)

plolo/+ &




SIMPLE PLOTTING BASICS

74 Figure 1

Much of your power is in
the plot command:

plt.plot(x, vy,
linestyle=‘none’,
color=¢k’,
marker=¢x’)
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SIMPLE PLOTTING BASICS

74 Figure 1

Much of your power is in
the plot command:

plt.plot(x, vy,
linestyle=‘none’,
color=¢k’,
marker=¢$\\beta$’,
markersize=10)

200




SIMPLE PLOTTING BASICS

74 Figure 1 — O X

Much of your power is in
the plot command:

plt.plot(x, vy,
linestyle=‘none’,
color=¢k’,
marker=¢$\\beta$’,
markersize=10)

PRO TIP:

For a scatter plot, use

plt.scatter() instead




SIMPLE PLOTTING BASICS

Creating error bars:

plt.errorbar(x, vy,
yerr=yerr)

oo+ & @




SIMPLE PLOTTING BASICS

Cre r ba
plt. bar (x
yer , fm )

oo+ & @




SIMPLE PLOTTING BASICS

yerr=yerr,

oo+ & @




SIMPLE PLOTTING BASICS

Creating error bars:

plt.errorbar(x, vy,
yerr=yerr,
fmt=‘none?’)

PRO TIP:

All of these functions have oo+ =&

many more options. Check
the docs.




| COLOURS IN MATPLOTLIB

In matplotlib, colours can be specified in a number of ways:

Basic Colours
Most basic (primary

and secondary)
colours can be quoted
by their first letter:
‘b’ — blue
‘r' —red
‘g’ — green
‘v’ — yellow
‘w’ — white

‘k’ — black

HTML Colours
Any defined HTML
colour name is a valid
colour:

“deeppink”
“slateblue”
“ivory”
“lemonchiffon”

Hex code
Any string of hex
codes in the form of
“Hrrggbb” where
each pair goes from

00 fo ff:
HEFFEEE”
“#000000"
“#££0000”
“HEFOOFF”




ANATOMY OF A PLOT WINDOW
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Axis

ANATOMY OF A PLOT WINDOW




ANATOMY OF A PLOT WINDOW

title

ylabel
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ANATOMY OF A PLOT WINDOW




HOUSEKEEPING FUNCTIONS

To deal with the various figures and axes that there can be, you have
the following housekeeping functions:

# Clearing Plots
plt.cla() # Clear Current Axis
plt.clf() # Clear Current Figure

# Getting active objects
axl = plt.gca() # Get Current Axis
figl = plt.gcf() # Get Current Figure

# Make new figure
plt.figure() # Make new figure (with defaults)
plt.figure(figsize=(6,8)) # Make new figure (6”x8”)



SETTING AXIS PROPERTIES

You can (at any time in the plotting) change the range (lim), scale (log
or linear), labels or ticks on a plot. Replace x with y (or vice versa)
when necessary:

# Limits and Scale
plt.xlim([0, 5]) # Set x-limits to 0 -> 5
plt.yscale(‘log’) # Set y-axis to logarithmic

# Setting Labels
plt.xlabel(‘X-axis’) # Label the X-axis
plt.title(“Title”) # Set the Axis title

# Setting Ticks
plt.xticks([0, 4, 10, 19]) # Location of x-ticks



LABELS AND LEGENDS (OH MY!)

You can use “labels” on any
plot object to automatically
populate a legend:

plt.errorbar(..,
label=“Test Data”)

plt.legend()

74 Figure 1




LABELS AND LEGENDS (OH MY!)

You can use “labels” on any
plot object to automatically
populate a legend:

plt.errorbar(..,
label=“Test Data”)

plt.legend(
frameon=False

)




SAVING A FIGURE

Saving a figure is a one-line operation. Matplotlib will figure out what
format you want by the extension of the filename:

plt.savefig(“filename.pdf”) # Saving as a PDF
plt.savefig(“filename.png”) # Saving as a PNG
plt.savefig(“filename.eps”) # Saving as an EPS

# Can also determine what output DPI:
plt.savefig(“filename.jpg”, dpi=300)



SAVING A FIGURE

Saving a figure is a one-line operation. Matplotlib will figure out what
format you want by the extension of the filename:

plt.savefig(“filename.pdf”) # Saving as a PDF
plt.savefig(“filename.png”) # Saving as a PNG
plt.savefig(“filename.eps”) # Saving as an EPS

# Can also determine what output_DP
plt.savefig(“filename.jpg”, dpi PRO TIP-

EPS files do not support

transparency natively




BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

figl = plt.figure()
axl = figl.add_axes([0.1, 0.1, 0.8, 0.8])

axl.plot(x, y, marker=¢‘o’, label=‘plotted line’)
axl.legend()

axl.set_xlim([1, 10])
axl.set_ylim([0, 5])

axl.set_xscale(‘log’)
axl.set_xtitle(‘X Label’)
axl.set_ytitle(‘Y Label’)
figl.savefig(r7lename)
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BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

figl = plt.figure()
axl = figl.add_axes([0.1, 0.1, 0.8, 0.8])

axl.plot(x, y, marker=¢‘o’, label=‘plotted line’)
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i e, BTy S
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axis.set_property. Also, you can get the
current values for these by

axl.set_xscale(‘log’)
axl.set_xtitle(‘X Label?)
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figl.savefig(r7lename)

axis.get_property.
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This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

figl = plt.figure()
axl = figl.add_axes([0.1, 0.1, 0.8, 0.8])

axl.plot(x, y, marker=¢‘o’, label=‘plotted line’)
axl.legend()

axl.set_xlim([1, 10])
axl.set_ylim([0, 5])

axl.set_xscale(‘log’)

axl.set_xtitle(‘X Label’)
axl.set_ytitle(‘Y Label’

)
figl.savefig(7r7lename) ?




BUILDING FROM THE GROUND UP

This method gives you a lot more flexibility. Instead of using
convenience functions, you use methods on each of the objects:

figl = plt.figure()
axl = figl.add_axes([0.1, 0.1, 0.8, 0.8])

axl.plot(x, y, marker=¢‘o’, label=‘plotted line’)
axl.legend()

axl.set_xlim([1l, 10])

axl.set_ylim([0, 5]) PRO TIP-
axl.set_xscale(‘log’) This is particularly useful if
axl.set_xtitle(‘X Label’) you have multiple figures and

axl.set_ytitle(‘Y Label’)
figl.savefig(f7lename)

axes.




CUSTOMIZING DEFAULTS

There’s a lot of different parameters that matplotlib chooses by
default, but you can set your own using a matplotlibre file. This file
will not exist by default, but you can download a sample one here:

http: //matplotlib.org/ static/matplotlibre

The place to put this file depends on your platform:

Windows: UserDirectory /.matplotlib /matplotlibre
(i.e., C:/Users/username /.matplotlib /matplotlibre)

MacOS: UserDirectory /.matplotlib /matplotlibre
(i.e., Users/username /.matplotlib /matplotlibre)

Linux: UserDirectory/.config/matplotlib /matplotlibre
(i.e., /home /username /.config /matplotlib /matplotlibrc)


http://matplotlib.org/_static/matplotlibrc

CUSTOMIZING DEFAULTS

There’s a lot of different parameters that matplotlib chooses b
default, but you can set your own using a ma
will not exist by default, but you can downlc PRO TIP:

http: //matplotlib.org/ static/matplotlibre The default matplotlib font is
a crime against typography.

The place to put this file depends on your p Change it as soon as you can

Windows: UserDirectory /.matplotlib /matplc
(i.e., C:/Users/username/.matplotlib /matplo 11 e lin e el fele =i
an open source font, may |
suggest either Open Sans or
Source Sans Pro?

MacOS: UserDirectory /.matplotlib /matplotli
(i.e., Users/username /.matplotlib /matplotlib

Linux: UserDirectory/.config /matplotlib /mat}.
(i.e., /home /username/.config /matplotlib /matplotlibre


http://matplotlib.org/_static/matplotlibrc

EXERCISE TlME| But when I call you never

seem to be home.




