JHU Physics & Astronomy
Python Workshop 2017

3. NUMERICAL METHODS I1

Lecturer: Mubdi Rahman

DATA FILES: WHERE THE PARTY'S AT

At some point, you need to do more than
just play with numbers that you’ve
generated in your python code, and getting
that data into and out of your python
environment is important.

DATA FILE TYPES

Two main categories of data files:

Can see data in your text editor

Con: No standardization, at the
mercy of whoever formatted it

Con: Difficult to store “metadata”
Con: Slow, Large

Con: Whole file must be read in

Con: Looks like a bunch of 1s and Os

(Usually) easy to load and get
access to data

Made to store metadata
Fast, Small

Can read only the stuff you
want

| DATA FILE TYPES

Two main categories of data files:

Human Readable

“ro: Can see data in your text editor Con: Looks like a bunch of 1s and Os

Con: No standardization, at the Pro: (Usually) easy to load and get
mercy of whoever formatted it access to data

PRO Tl P3 “ro: Made to store metadata

There are many binary-based
formats, including HDF5 and Pro: Fast, Small

NetCDF, all of which have
python interfaces. In this “ro: Can read only the stuff you

workshop, we’ll go in depth with want
FITS files

INTRODUCING ASTROPY!

Astropy v1.0.6 »

Page Contents
Astropy Core Package
Documentation

* User Documentation

* Getting help

* Reporting Issues

* Contributing

+ Developer Documentation
« |ndices and Tables

astropy

A Community Python Library for Astronomy

Welcome to the Astropy documentation! Astropy is a community-driven package intended to contain much of the core
functionality and some common tools needed for performing astronomy and astrophysics with Python.

User Documentation

Mubdi —
(@) Astropy Core Package Do X
&« (&= astropy.readthedocs.org/en/stable/
hd Yahoo! Mail ﬁ ADS Save to Mendeley E astro-ph: Galaxy E astro-ph: Cosmology @ Baltimore Weather -.. ¢ Environment Canada »

[Other bookmarks

What's New in Astropy 1.07

Astropy at a glance

* Overview
« Installation
« Getting Started with Astropy

Core data structures and transformations

Constants (astropy.constants)

Units and Quantities (astropy.units)
N-dimensional datasets (astropy.nddata)
Data Tables (astropy.table)

Time and Dates (astropy.time)

Astronomical Coordinate Systems (astropy.coordinates)
« World Coordinate System (astropy.wes)

next »

Contains lots ‘o useful functionality for astronomy & beyond.
The Docs: http: //astropy.readthedocs.org/en/stable /

http://astropy.readthedocs.org/en/stable/

INTRODUCING ASTROPY!

@ Astropy Core Package Do X

EOm— |

€& C | astropy.readthedocs.org/en/stable/

., —
%0 =

Astropy v1.0.6 »

Page Contents
Astropy Core Package a S t ro p y

Documentation

+ Developer Documentation

+ Indices and Tables User Documentation

What's New in Astropy 1.07
Astropy at a glance
* Overview

« Installation
« Gelling Started with Astropy

Core data structi and ti

Constants (astropy.constants)

Units and Quantities (astropy.units)

N-dimensional datasets (astropy.nddata)

Data Tables (astropy.table)

Time and Dates (astropy.time)

Astronomical Coordinate Systems (astropy.coordinates)
World Coordinate System (astropy.wes)

I Yahoo! Mail ﬂ ADS | | Save to Mendeley astro-ph: Galaxy astro-ph: Cosmology * Baltimore Weather -...

* User Documentation A Community Python Library for Astropa
» Getting help

* Reporting Issues Welcome to the Astropy documentation! Astropy is a community-g

* Contributing functionality and some common tools needed for performing ast

ol Envi Canada » [Other bookmarks

next »

PRO TIP:

astropy is not installed by
default in the Enthought Canopy
installation. Please install it now

(if you haven't already) through

the package manager.

Contains lots ‘o useful functionality for astronomy & beyond.

The Docs: http://astropy.readthedocs.org/en/stable /

http://astropy.readthedocs.org/en/stable/

FITS FILES!

A useful (binary) format
commonly used in astronomy to
store image or tabulated data.

astropy.table

(from astropy.table

astropy.io.fits S eEiE relsle)

(from astropy.io

import fits) We'll use this for FITS (and other)
tables

We'll use this for FITS images

| FITS FILES!

A useful (binary) format
commonly used in astronomy to
store image or tabulated data.

PRO TIP: astropy.table

(from astropy.table

When you import something with .
import Table)

a capital letter first (i.e., from

tropy.table i t Table),
astropy.table import Table) We'll use this for FITS (and other)

you're importing a class. These
tables

are special types of variables

with useful methods

FITS FILES!

astropy.io.fits

(from astropy.io
import fits)

We'll use this for FITS images

A useful (binary) format
commonly used in astronomy to
store image or tabulated data.

PRO TIP 2.

You can also deal with tables

through the normal astropy.io.fits
interface. The “table” interface is €
quite slick, however and makes

life easier (especially when

making new tables).

FITS IMAGES

O SAOImage ds? —
File Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help
File m&2opt.fits

Object NONE

Value 163.501

fls ee | 9:55:37.280 | & |+69:40:13.66

Physical K| 384167 |Y| 129.685

Image X | 384167 |Y¥| 129685 t
Frame 1 X 1.728 0000 |=

file edit view frame bin zoom scale color regien WS

A FITS file open in DS? (a common viewer)

FITS files can store
multidimensional data
(commonly 2 or 3
dimensions).

Any given FITS file can
contain multiple images (or
tables) called extensions

Every FITS extension contains
a header and data.

FITS headers can contain
World Coordinate System
(wcs) information that
indicates where a given pixel
is on the sky

FITS IMAGES

0 SAOImage ds?

File Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help

File m&2opt.fits
Object NONE
Value 163.501
fls ee | 9:55:37.280 | & |+69:40:13.66 =%
Physical K| 384167 |Y| 129.685
Image X 384.167 | Y| 129.685 ‘
Frame 1 3 1728 0000 |z

file edit view frame bin zoom scale color regien we

P head: page setup print

A FITS file open in DS? (a common viewer)

FITS files can store
multidimensional data
(commonly 2 or 3
dimensions).

Any given FITS file can

contain multiple images (or
t~nlalAac) ~allAA Avlan(ions

ntains

em

1 pixel

READING IN FITS IMAGES

Convenience functions make reading FITS images easy:

from astropy.io import fits
imgl = fits.getdata(rf7lename) # Getting the image
headl = fits.getheader(f7lename) # and the Header

This opens the image as a Numpy array, and the header as a

“dictionary-like” object (i.e., you can access the individual header
keywords through “headl[‘key’]”).

To open other extensions in the fits file:

imgl = fits.getdata(f7lename, 0) # Primary Ext
img2 = fits.getdata(f7lename, 1) # Second Ext
img2 = fits.getdata(f7lename, ext=1) # Equivalent

READING IN FITS IMAGES

Convenience functions make reading FITS images easy:

from astropy.io import fits
imgl = fits.getdata(rf7lename) # Getting the image
headl = fits.getheader (f7lename) # and the Header

This opens the image as a Numpy array, and the header as a
“dictionary-like” object (i.e., you can access the individual header
keywords through “headl[‘key’]”).

PRO TIP:

In addition to local files, you
can open FITS files on the
internet by using the url as

To open other extensions in the fits file:

imgl = fits.getdata(77lename,
img2 = fits.getdata(77lename,

T e £
Tmg2 = Fits.getdata(77lename N T,

READING IN FITS IMAGES

Convenience functions make reading FITS images easy:

from astropy.io import fits
imgl = fits.getdata(rf7lename) # Getting the image
headl = fits.getheader (f7lename) # and the Header

This opens the image as a Numpy array,
“dictionary-like” object (i.e., you can ac PRO TIP 2:
keywords through “headl[‘key’ ")

This is not the most efficient

To open other extensions in the fits file: | eh/AuerelelliRemg Rl
especially larger ones. If you

imgl = fits.getdata(77lename, want to manipulate large

img2 = fits.getdata(77lename,

img2 = fits.getdata(F7lename, s by

there’s a faster way.

FITS FILES: A MORE TECHNICAL REVIEW

Basic structure of a FITS file:

Header Data Unit List (HDU List)

Header Data Header Data Header Data
Unit (HDU) Unit (HDU) Unit (HDU)

Primary Extension (O) Secondary Extension (1) Secondary Extension (N-1)

FITS FILES: A MORE TECHNICAL REVIEW

Basic structure of a FITS file:

Header Data Unit List (HDU List)

Header Data Header Data Header Data
Unit (HDU) Unit (HDU) Unit (HDU)

FITS tables cannot be in the

primary extension.

Primary Extension (O) Secondary Extension (1)

READING IN A FITS FILE (EXPANDED)

Reading a file, now knowing what a FITS file consists of:

hdulist = fits.open(f7ilename) # Getting the HDUlist
hdulist.info() # The composition of the file

Now getting the header and/or data:

head® = hdulist[0].header # Primary Ext Header
data® = hdulist[l].data # Second Ext Data

Writing to a new file and closing:

hdulist.writeto(77 lename)
hdulist.close() # Closing the FITS file

READING IN A FITS FILE (EXPANDED)

Reading a file, now knowing what a FITS file consists of:

hdulist = fits.open(f7ilename) # Getting the HDUlist
hdulist.info() # The composition of the file

Now getting the header and/or data: PRO TIP-

head® = hdulist[0].header # Prim FITS files are read in such that
datad = hdulist[1l].data # Second the first axis (often the RA for

astronomical images) is read in

as the last axis in the numpy
array. Be sure to double check
hdulist.writeto(7r7lename) that you have the axis you need.
hdulist.close() # Closing the FI

Writing to a new file and closing:

READING IN A FITS FILE (EXPANDED)

Reading a file, now knowing what a FITS file consists of:

hdulist = fits.open(f7ilename) # Getting the HDUlist
hdulist.info() # The composition of the file

Now getting the header and/or data: PRO TIP 2-

head® = hdulist[0].header # PrimR LR 41N S AeI=3Te]0]iM {eTI N1
data® = hdulist[1l].data # Second EENZIVR ISR XA F g (-Kel1
existing file. To force an

overwrite, pass the clobber

Writing to a new file and closing:
argument:

hdulist.writeto (7 lename)
hdulist.close() # Closing the FI T

WRITING OUT A FITS IMAGE

Making a new FITS image is also easy from a Numpy array:

Making a Primary HDU (required):

primaryhdu = fits.PrimaryHDU(arrl) # Makes a header
or if you have a header that you’ve created:
primaryhdu = fits.PrimaryHDU(arrl, header=headl)

If you have additional extensions:
secondhdu = fits.ImageHDU(arr2)

Making a new HDU List:
hdulistl = fits.HDUList([primaryhdu, secondhdu])

Writing the file:
hdulistl.writeto(77lename, clobber=True)

SHORT DETOUR: GLOB MODULE

In one of the many useful python packages, glob lets you get lists of
files using wildcards:

import glob

Getting list of all files in current directory:
filelistl = glob.glob(‘*x’) # or
filelistl = glob.glob(¢./*?)

Getting list of all files in all directories two
levels down with the extension ¢.fits’:
filelist2 = glob.glob(‘*x/x/*.fits’)

SHORT DETOUR: OS MODULE

Additionally, the os module provides a large number of useful
filesystem functions:

import os

Basic File Operations:

os.remove(filename) # Delete file named f7lename
os.rename(oldfilename, newfilename) # Rename file
os.mkdir(dirname) # Making new directory

Path functions:

os.path.exists(loc) # Checks if loc exists
Splits loc into directory and file
os.path.split(loc)

Splits loc into path+file and extension
os.path.splitext(loc)

SHORT DETOUR: LAMBDA FUNCTIONS

Sometimes you want to define a simple function without the full
function syntax. Lambda functions exist for this exact reason:

Defining the Function:
functl = lambda x: x**2 # Returns the square of x

Using the Function:
tmpvarl = functl(5)

Can use multiple variables:
funct2 = lambda x,y: x + vy

Using the Function:
tmpvar2 = funct2(5, 6)

TABLES (& FITS TABLES)

While you can use the FITS interface to open tables, Astropy makes it
very easy and convienient with the astropy.table interface:

from astropy.table import Table

Getting the first table
tl = Table.read(f7lename. fits)

Getting the second table
t2 = Table.read(f7lename.fits, hdu=2)

This provides a really flexible Table object that is a pleasure to deal
with. It is easy to access different types of data, and read in and
output to a wide variety of formats (not just FITS)

TABLE FORMATS

My - o x
@) Unified file read/write intc %
c astropy.readthedocs.org/en/stable/io/unified.html#getting-started-with-table-i-o =
I Yahoo! Mail ADS Save to Mendeley E astro-ph: Galaxy astro-ph: Cosmology {g Baltimore Weather -... * Environment Canada (@ Fstoppers | Video Bl... 1: smitten kitchen #» [Other bookmarks
Format Read Write Auto-identify Deprecated °
aastex Yes Yes No Yes
ascii Yes Yes No
ascii.aastex Yes Yes No
ascii.basic Yes Yes No
ascii.cds Yes No No
ascii.commented_header Yes Yes No
ascii.dacphot Yes No No
ascii.ecsv Yes Yes No
ascil.fixed_width Yes Yes No
ascil.fixed_width_no_header Yes Yes No
ascii.fixed_width_two_line Yes Yes No
ascii.html Yes Yes Yes o
ascii.ipac Yes Yes Mo Pret‘l‘y mUCh Gnythlng
ascii.latex Yes Yes Yes ’
ascil.no_header Yes Yes No YOU d ever wd nT!
ascii.rdb Yes Yes Yes
ascii.sextractor Yes No No
ascii.tab Yes Yes No
ascii.cav Yes Yes Yes
cds Yes No No Yes
daophot Yes Mo Mo Yes
fits Yes Yes Yes
hdf5 Yes Yes Yes
htmi Yes Yes No Yes
ipac Yes Yes No Yes
latex Yes Yes No Yes
rdb Yes Yes No Yes
votable Yes Yes Yes _
Deprecated format names like aastex will be removed in a future version. Use the full name (e.g. ascii.aastex) .

PLAYING WITH TABLE DATA

A table is both a dictionary-like and numpy array-like data type
that can either be accessed by key (for columns) or index (for rows):

Getting column names, number of rows:
tl.colnames, len(tl)

Getting specific columns:
tl[‘namel’], tl[[‘namel’, ‘name2’]]

Getting specific rows (all normal indexing works):
t1[0], t1[:3], tl[::-1]

Where searching also works:
inds = np.where(tl[‘namel’] > 5)
subtable = tl1l[inds] # Gets all columns

PLAYING WITH TABLE DATA

A table is both a dictionary-like and numpy array-like data type
that can either be accessed by key (for columns) or index (for rows):

Getting column names, number of rows:
tl.colnames, len(tl)

Getting specific columns:
tl[‘namel’], tl[[‘namel’, ‘name2’]]

Getting specific rows (all nor PRO TIP:

ELr, Enfesl, Bllse=l] Extracting a single column will

give you a Numpy array-like

Where searching also works: . .
variable with all your

inds = np.where(tl[‘namel’] > 5) :
subtable = ti[inds] # Gets all cd favourite methods attached.

MAKING A TABLE

To make a table manually is easy with Numpy arrays:

Given two columns (1D) arrl and arr2:
tl = Table([arrl, arr2], names=(“a”, “b”))

The columns are named “a” and “b”.

Adding an additional column:
coll = Table.Column(name=“c”, data=arr3)
tl.add_column(coll)

Adding an additional row:
row = np.array([1, 2, 3])
tl.add_row(row)

WRITING OUT A TABLE

Writing out a table is also quite simple:

Writing out FITS table:
tl.write(f7lename. fits)

Writing out specific text type:
tl.write(f7lename. txt, format=‘ascii.tab’)

Can even write out to LaTeX:
tl.write(f7lename. tex, format=‘ascii.latex’)

WRITING OUT A TABLE

Writing out a table is also quite simple:

Writing out FITS table:
tl.write(f7lename. fits)

Writing out specific text type:
tl.write(f7lename. txt, format=*¢ i 5)

Can even write out to LaTe '
tl.write(filename. tex, forma(IEMERIISORNTRITSIICRCRCIIERT
a nicely formatted manner, you

can do:

tl.show_in_browser ()

EXERCISE '”ME| To tell you I'm sorry for

everything that I've done.

