JHU Physics & Astronomy

1 BASICS OF PYTHON | FPython Workshop 2017

Lecturer: Mubdi Rahman

HOW IS THIS WORKSHOP GOING TO WORK?

We will be going over all the basics you need to get started and get
productive in Python! Please code along with us as we go!

There are likely multiple ways of doing many things in Python, but
we’re going to show you one way. It may not be the best for your
particular purposes, but we will try to be self consistent.

We will constantly refer you back to the documentation. The packages
we have here have far more functionality than the scope of this
workshop. If there’s something that you want to do, Python likely has a
package or function that can do it (or at least make your life easier).

HOW IS THIS WORKSHOP GOING TO WORK?

We will be going over all the basics you need to get started and get
productive in Python! Please code along with us as we go!

There are likely multiple ways of doing PRO Tl P5
we're going to show you one way. It may i 50 AT T

particular purposes, but we will try to be 10 SR TS e e

or hints on how to make your
coding life easier!
We will constantly refer you back to the ¢
we have here have far more functionality than the scope of this
workshop. If there’s something that you want to do, Python likely has a
package or function that can do it (or at least make your life easier).

STATEMENT OF LEARNING

This workshop is an open and respectful environment where all
participants with a diversity of backgrounds and experiences are
welcome to proceed at their own pace and ask questions without
judgment.

We encourage all participants to work together and ask questions to
your peers and your instructors, however simple they may seem.

We (your instructors) are here to provide assistance on the course
content to help all participants maximize the value of this workshop
for them.

WHY PYTHON?

Open Source/Free: No need to worry about licences
Cross-platform: Can be used with Windows/Macs OS /Linux

Full-featured Packages: If there’s something you want to do, there’s
probably a package out there to help you

Code Portability: With most code, it can run unaltered on a plethora
of computers so long as all the required modules are supplied

Large and Growing Community: People from all fields from
Astronomy to Sociology are coding in Python, creating a diverse and
rich community of experts all over.

WHY PYTHON?

Open Source/Free: No need to worry about licences

Cross-platform: Can be used with Windows/Macs OS /Linux

PRO TIP:

In this workshop, we’ll be using
Python 3, but teach you the
differences in Python 2 (which is

Full-featured Packages: If there’s sometf
probably a package out there to help

Code Portability: With most code, it ca
of computers so long as all the required

Large and Growing Community: Peopl 2l iole el dele febini el il 4
Astronomy to Sociology are coding in P
rich community of experts all over.

RUNNING PYTHON

Directly from script:

>> python scriptname.py

Running a python script from beginning to end in your favourite terminal

| RUNNING PYTHON

Directly from script:

PRO TIP:

>> python scriptname.py Python scripts traditionally have
the extension “.py”

Running a python script from beginning to e

RUNNING PYTHON

Directly from script:

>> python scriptname.py
Interactively:
>> dpython

Opening an “ipython” process to either run a script, or use as a
“calculator” — or bothl!

RUNNING PYTHON

Directly from script:

>> python scriptname.py

Interactively:

>> dpython PRO TIP:

You can also run straight python
Opening an “ipython” process to either r

interactively, but this is not

“calculator” — or bothl!
recommended

RUNNING PYTHON

Directly from script:

>> python scriptname.py

Interactively:
>> dpython
Running a script once in ipython:

In [1]: %run scriptname.py
or:

In [1]: execfile(‘scriptname.py’)

LEAVING PYTHON

If in script: python will automatically exit when script has completed

Interactively: just type
In [1]: exit

Or press: Ctrl-D (on Windows, Linux, and Macs)

LEAVING PYTHON

If in script: python will automatically exit when script has completed

Interactively: just type
In [1]: exit

Or press: Ctrl-D (on Windows, Linux, and Macs)

PRO TIP:

Ctrl-C will not exit you out of

(i)python, but rather cancel what
you are currently doing

INTERACTIVE PYTHON (IPYTHON)

A special shell on top of python that makes using it
interactively a breeze. It includes such features as:

Tab-complete (both functions and variables)
Documentation at the push of a “2”
Full history accessible by pressing up and down

Variables stay loaded for you to investigate and
manipulate

IPYTHON MAGIC WORDS & CHARACTERS

To get documentation (for anything): 1n [1]: fFfunctname?

To run a shell command: In [2]: 'ed dirname
To run a script file: In [2]: %run scriptname.py
To time a function: In [4]: %timeit command

To see your command history: In [5]: %history

IPYTHON MAGIC WORDS & CHARACTERS

To get documentation (for anything): 1n [1]: Ffunctname?

To run a shell command: In [2]: 'ed dirname

To run a script file: In [2]: %run scriptname.py
To time a function: In [4]: %timeit command

To see your command history: In [5]: %history

PRO TIP:

Many basic shell commands (i.e.,
cd, Is, pwd) work in ipython

without the use of the bang (!)

ANACONDA: WHAT WE'LL BE USING

) Anaconda Navigator
File Help

ﬁ‘ Home
‘ Environments

E Projects (beta)

* Learning

~n Community

Documentation
Developer Blog

Feedback

{0 ANACONDA NAVIGATOR

Applications on | root [+] channets
] o

. L]
—_—
Jupyter IPTy
L] e
notebook qtconsole

5.0.0 4.3.0

Web-based, interactive computing
notebook environment. Edit and run
human-readable docs while describing the
data analysis.

anaconda-fusion

1.02

Integration between Excel ® and Anaconda
via Notebooks. Run data science functions,
interact with results and create advanced

visualizations in a code-free app inside Excel

PyQt GUI that supports inline figures,
proper multiline editing with syntax
highlighting, graphical calltips, and more.

glueviz

0.10.4

Multidimensional data visualization across
files. Explore relationships within and
among related datasets.

Install

Sign in to Anaconda Cloud

Refresh
~
<]
"ﬁ
spyder
3.1.4
Scientific PYthon Development
EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
debugging and introspection features
o
orange3
341
Component based data mining framework.
Data visualization and data analysis for
novice and expert. Interactive workflows
with a large toolbox.
v

CANOPY: MATLAB/IDL-LIKE PACKAGE

@ Editor - Canopy

File Edit View Search Run Tools Window Help
bl =]

File Browser 5 x

Filter: ‘AII Supported Files "

> Mubdi
v || Recent Files
| winpdb

Create a new file

or

‘ Select files from your computer‘

Tip: You can also drag and drop files/tabs here.

Python C:\Users\Mubdi ~ =x

In [1]: 7 A

In [2]:

Cursor pos =12 =1 ‘Python -

CANOPY: mATLAB/IDL-LIKE PACKAGE

@ Editor - Canopy
File Edit View Search Run Tools Window Help

ile Browser
ilter: ‘AII Supported Files "

> 1 Mubdi
o Recent Files
_ winpdb

File Browser

CANOPY: mATLAB/IDL-LIKE PACKAGE

@ Editor - Canopy - =
File Edit View Search Run Tools Window Help

Create a new file

or

‘ Select files from your computer‘

Tip: You can also drag and drop files/tabs here.

CANOPY: mATLAB/IDL-LIKE PACKAGE

@ Editor - Canopy
File Edit View Search Run Tools Window Help

lpython Terminal

C:\Users\Mubdi + x
~N

v

JUPYTER NOTEBOOK: ANOTHER OPTION

0 Anaconda Navigator - [m] X
File Help
) ANACONDA NAVIGATOR Soninto Avscond Cl
M Home L -
Applications on root Channels Refresh
‘ Environments ~
o o
. 4
i A 4
a Projects (beta) Jupyter
L]
0 notebook tconsole spyder
I Learning q Py
5.0.0 4.3.0 3.1.4
Web-based, interactive computing PyQt GUI that supports inline figures, Scientific PYthon Development
- Community notebook environment. Edit and run proper multiline editing with syntax EnviRonment. Powerful Python IDE with
human-readable docs while describing the highlighting, graphical calltips, and more. advanced editing, interactive testing,
data analysis. debugging and introspection features
o o
anaconda-fusion glueviz orange3
Documentation 102 0.104 341
Integration between Excel ® and Anaconda Multidimensional data visualization across Component based data mining framework.
Developer Blo via Notebooks. Run data science functions, Files. Explore relationships within and Data visualization and data analysis for
P 9 interact with results and create advanced among related datasets. novice and expert. Interactive workflows
visualizations in a code-free app inside Excel with a large toolbox.
Feedback
Install
Yo v
L4 =]

Can launch from Anaconda: runs a python session in the background

JUPYTER NOTEBOOK: ANOTHER OPTION

B3 newnotebook X B = O X
e - O ‘ localhost:8888/notebooks/documents/notebooks/newnotebook.ipynb# ﬂ{ =S :/n @
— J u pyte r newnotebook (unsaved changes) P
File Edit View Insert Cell Kernel Help 4 ‘ Python2 ©
+ x @ B 4+ v MW B C Code ~ Cell Toolbar: None ~

This is a Header
These are details about the code.

In [1]: | # This is code I can run in a single cell
x =1

In [2]: print(l)

1

J.n[]:|

Runs a ‘““notebook” in a web browser. Keeps code and notes together.

JUPYTER NOTEBOOK: ANOTHER OPTION

Headers and Notes

JUPYTER NOTEBOOK: ANOTHER OPTION

Code

(cells run independently)

JUPYTER NOTEBOOK: ANOTHER OPTION

Code

(cells run independently)

PRO TIP:

We will be distributing the
solutions to the example
problems through Jupyter
notebooks.

EVEN MORE HEAVYWEIGHT OPTIONS

<)
File Edit View Project Build Debug Team Tools Test Analyze Window Help

BraRe 9 - Debug ~ AnyCPU ~ B Start - M _

PythonApplicationl.py® # X Anaconda 4.3.1 Interactive Qutput

numpy n
matplotlib.pyplot
I int:
#3 EnvironmentError

*3 FloatingPointError

#3 IndentationError

@ input

#ig [int type int

% InterruptedError int(x=0) - > integer

int(x, base=10) -> integer

Jaioid3 smnias

x0q|oo]

@ isinstance

#3 Keyboardinterrupt Convert a number or string to an integer, or return 0 if no arguments

@ Notimplemented are given. If x is a number, return x._int_{). For floating point
The completion DB needs to be refreshed. numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,

bytes, or bytearray instance representing an integer literal in the

given base. The literal can be preceded by '+' or *-* and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int{'0b100", base=0)

4

Can develop python in Visual
Studio for full IDE Experience

P o B X

Mubdi Rahman ~ MR

Python Environments

Anaconda 4.3.1
Continuum Analytics, Inc.

Python 3.6 (64-bit)

Python Software Foundation

IntelliSense

Scraping astropy

PyQt3 (68 modules)

pyatgraph (319 modules)

pyreadline (41 modules)

Ppytest

pythoncom

dde

pywin (106 modules)
Team Explorer

Properties

o=74

1 Add to Source Control «

MODULES: THE POWER OF PYTHON

The base language of Python is actually quite limited. Most of its
power comes from Modules (or sometimes referred to as Packages)

Modules must be imported before they can be used:

In [1]: dmport modulel Importing single or multiple
In [2]: {import module2, module3 modules on a single line

Once imported, you can access functions or variables:

In [2]: modulel. functionl()

MODULES: THE POWER OF PYTHON

Sometimes typing the module name all the time can be annoying in
which case:

Creating a shorter .
name or just getting In [1]: import modulel as ml

the function you In [2]: from module2 import function2
want

Once imported, you can access functions or variables:

In [2]: ml. functionl()
In [4]: function2()

| MODULES: THE POWER OF PYTHON

Sometimes typing the module name all the time can be annoying in
which case:

Creating a shorter .
name or just getting In [1]: 1impor, PRO TIP:
the function you In [2]: from

Some places will show examples
want

that involve importing all

) . functions in a module by:
Once imported, you can access functio 7

In [2]: ml.functionl() from modulel import *
In [4]: function2()

While this may seem handly, it is
dangerous. DON’T DO THIS!

INSTALLING NEW MODULES

Anaconda provides the majority of modules you'll want and /or need
automatically. But there are modules that you'll likely want to get.
Anaconda makes this easy using the Environments Tab

) Anaconda Navigator - [u] x
File Help
{) ANACONDA NAVIGATOR Signiinto Anaconda Cloud
A Home "
‘ Search Environments Q Installed ~| Channels Update index... Search Packages Q
ﬁ Environments I root > Name ~ T Description Version -
sccelerate] 231
ﬁ Projects (beta)
accelerate_cudalib () 20
0 : N .
I Learning alabaster (D Configurable, python 2+3 compatible sphinx theme 0.7.10
anaconda-client () Anaconda.org command line client library 163
- Community
anaconda-project 0 Reproducible, executable project directories 060
anyqt D Pyqt4/pyqts compatibility layer. 0.08
< asnierypto Q 0220
astroid () Abstract syntax tree For python with inference support A 143
astropy D Community-developed python library for astronomy A 133
babel O Utilities to internationalize and localize python applications A 240
Documentation backports O 1.0
Developer Blog beautifulsoupd D Python library designed for screen-scraping 460
bitarray o] 0.8.1
Feedback
bkcharts (D Optional high level charts api built on top of bokeh 0.2
oy — v
¥y o * L [<] [
Create an Import

INSTALLING NEW MODULES

Python also makes installing packages easy in general using pip on
the command line:

C:\Users\Mubdi> pip install packagename

This downloads and installs any package available on the
(centralized) Python Package Index (PyPl)

C:\Users\Mubdi> pip install Attp://url.goes. here

This downloads and installs the package from somewhere on the
internet

BASICS OF A SCRIPT: COMMENTS

The most important part of any script

In [1]: # This 1s a comment
In [2]: # This 71s also a comment

For longer comments (in a script for instance):

This text is in a comment
So is this text

This text is outside a comment

BASICS OF A SCRIPT: COMMENTS

Take the comment pledge:

“I will comment liberally
and consistently
throughout all code |
write, or so help me
Python guru.”

BASICS OF A SCRIPT: COMMENTS

Take the comment pledge:

“I will comment liberally
and consistently
’rhroughou’r

thde IIy

BASICS OF A SCRIPT: INDENTATION

Python uses indents to indicate blocks of code — no brackets!

My schematic python script

command 1
command 2
command 3
inner command 1
Tnner command 2
more inner command 1
inner command 3
command 4

| BASICS OF A SCRIPT: INDENTATION

Python uses indents to indicate blocks of code — no brackets!

My schematic python script

command 1
command 2
command 3
inner command 1
Tnner command 2
more inner command
inner command 3 PRO TIP:

command 4 Let your text editor deal with

indenting for you. And when you

need to do it yourself, use
spaces not tabs.

BASICS OF A SCRIPT: VARIABLES

Variables are simple and flexible in python. There is no need to
declare any variable type before setting it. And they can be set at
any point throughout the script or on the fly (if using it interactively):

In [1]: varl = value # No need to declare

In [2]: var2, var3 = value2, value3
In [2]: # Multiple Values can be set at once

Anything can be a variable in python: numbers, strings, functions,
modoules, et cetera. You can check out what type the variable is by:

In [2]: type(varl)

BASICS OF A SCRIPT: PRIMITIVE VARIABLES

There are only a few built in variables in python:

Any form of text. These can be enclosed in single (‘) or double (“) quotes. They
also accept escape characters (i.e., \n, \t, \a)

In [1]: varl
In [2]: var2

‘This is a String’
“This 1is also a String”

When added, they make a longer string:

In [2]: var3 = varl + var2

| BASICS OF A SCRIPT: PRIMITIVE VARIABLES

There are only a few built in variables in python:

Any integer (..., -1, 0, 1, ...). Mathematical operations are as you expect

In [1]: varl, var2 = 1, 2

They are subject to floating point math:

In [2]: varl/var2 # will give you 0.5, not O
In [2]: varl//var2 # will give you 0, not 0.5

| BASICS OF A SCRIPT: PRIMITIVE VARIABLES

There are only a few built in variables in python:

Any integer (..., -1, 0, 1, ...). Mathematical operations are as you expect

In [1]: varl, var2 =1, 2

They are subject to floating point math:

In [2]: varl/var2 # will give y PRO TIP:

In [2]: varl//var2 # will give Taking an exponent uses the

double asterisk character (**):

X = y**2

| BASICS OF A SCRIPT: PRIMITIVE VARIABLES

There are only a few built in variables in python:

Any integer (..., -1, 0, 1, ...). Mathematical operations are as you expect

In [1]: varl, var2 =1, 2

They are subject to floating point math: PRO TIP 2:

In [2]: varl/var2 # will give yc This is the only case throughout

In [2]: varl//var2 # will give this workshop that something is
different in Python 2: integer

division is default

| BASICS OF A SCRIPT: PRIMITIVE VARIABLES

There are only a few built in variables in python:

Any real number (1.0, 2.5, 1e25). Mathematical operations are as you expect
In [1]: varl, var2 = 1.0, 2e2

Any operation with an int and a float will give you a float:

In [2]: 1/2.0 # will give you 0.5, not 0

| BASICS OF A SCRIPT: PRIMITIVE VARIABLES

There are only a few built in variables in python:

Any real number (1.0, 2.5, 1e25). Mathematical « PRO Tl P:
Every variable in python is an
In [1]: varl, var2 = 1.0, 2e2 object that has methods
(functions) associated with it. You
Any operation with an int and a float will give yo =clil clec=t [FIE I i =0 e)

character (.) after the variable
In [2]: 1/2.0 # will give you 0. ..

varl.method()

BASICS OF A SCRIPT: LISTS

Basic ordered grouping of any type of variables:

In [1]: list1 = [1, 2, 3]

Lists can contain different types of variables
In [2]: list2 = [1, ‘a’, 3.4]

You can make lists of lists

In [2]: lList3 = [1, [¢‘a’, ‘b’, ‘c’] , 3.4]

Accessing individual components of a list:

In [4]: x = 1listl[2] # Returns the 37 element
Indexing of lists starts at 0 and goes to n-1
In [5]: len(listl) # Gets the size of the list

BASICS OF A SCRIPT: LISTS

Useful functions associated with lists:

Create a list of integers from 0 to 3
In [1]: listl = range(4)

Sort your list
In [2]: sortedlist = sort(list2)

Add more to your list
In [3]: list3 = list3.append(newvariable)

Combine multiple lists together
In [4]: combinedlist = 1listl + list2

BASICS OF A SCRIPT: LISTS

Useful functions associated with lists:

Create a list of integers from 0 to 3
In [1]: listl = range(4)

Sort your list
In [2]: sortedlist = sort(list2)

Add more to your list
In [3]: list3 = list3.append(newv.

PRO TIP:

Combine multiple lists togethe ,
You can create an empty list to

In [4]: combinedlist = 1listl + 1

append to:
emptylist = []

BASICS OF A SCRIPT: TUPLES

Ordered grouping of variables. Not as flexible as lists (not mutable)
but the basics are the same:

In [1]: tuplel = (1, 2, 3)
In [2]: tuple2 = (1, ‘a’, 3.4)
In [3]: tuple3 = (1, (‘a’, ‘b’, ‘c’), 3.4)

Can also quickly assign values from within tuples:

In [4]: tupled4 = (1, 2, 3)
In [5]: varl, var2, var3 = tuple4d
also works for lists

BASICS OF A SCRIPT: INDEXING

Taking a simple list:

o) 1 2 3 4 5 6 7 8 9

- -

list[0] list[5] Simple indexing

BASICS OF A SCRIPT: INDEXING

Taking a simple list:

o) 1 2 3 4 5 6

-10 -9 -8 -7 -6 -5 -4

- -

List[-10] list[-5]

BASICS OF A SCRIPT: INDEXING

Taking a simple list:

0 1 2 3 4 5 6 7/ 8 9
\ J
|
list[1l:] Spanning arrays
\ J
|
list[5:8]
\ J
|

list[1l:-1]

BASICS OF A SCRIPT: INDEXING

Taking a simple list:

0 1 2 3 4 5 6 7 8 9
\ J
|
list[1:] Spanning arrays

PRO TIP: |

The range you choose will list[5:8]
exclude the value at the stop I

number

list[1l:-1]

BASICS OF A SCRIPT: INDEXING

Taking a simple list:

0 1 2 3 4 5 6 /7 8
list[::2]

Changing counting

9

| BASICS OF A SCRIPT: INDEXING

Taking a simple list:

o) 1 2 3 4 5 6 7 8 9

list[::2]

Changing counting PRO Tl P:

To reverse the order of an array,
just use:

[::-1]

BASICS OF A SCRIPT: DICTIONARIES

Unordered grouping of variables accessed by key. Anything can be a
key or a value:

In [1]: dictl = {‘val1l’:1, 2:2, ‘val3’:3}
In [2]: dictl[‘vall’] # Returns 1

In [2]: dictl[‘newval’] = 4 # Add new value
Can quickly get all the keys in a dictionary (in a list):

In [4]: dictlkeys = dictl.keys()

BASICS OF A SCRIPT: FUNCTIONS

Making a function is quite simple and can be defined anywhere:

def functionl(varl, var2):
Your Code goes here
var3 = varl + var?2
return var3

You can define optional arguments and return multiple values:

def functionl(varl, var2=‘value’):
var3 = varl + var?2
return var3, var2 # This will be a tuple

BASICS OF A SCRIPT: FLOW CONTROL

Conditional (if-else) statements:

if varl == 0:

Code to run if varl 7s 0O
elif varl == 1:

Code to run if varl i1s 1

else:
Code to run otherwise

BASICS OF A SCRIPT: FLOW CONTROL

While loop:

while varl > 5:
Code to run (in a loop) 1f varl > 5

For loop:

for tmp_var in listl:
tmp_var 1s set to the values in listl

If you want a for loop with numbers from 0 to N-1:

for tmp_var in range(N):
Code to run with tmp_var = 1 to N

BASICS OF A SCRIPT: FLOW CONTROL

Special keywords when you are within loops or conditionals

Skip everything else in this iteration and move to the next:

continue
Exit out of the most recent loop:

break

These keywords are usually put in conjuction with an if statement.

BASICS OF A SCRIPT: PRINTING

Printing is very easy:

In [1]: print(“This is a message.”)
In [2]: print(variablel)

Mixing variables and text is also easy:

In [1]: print(“This is a %s message.” % “string”)
In [2]: print(“%f, %i1” % (2.0, 2)) # Using tuple
In [3]: print(“%1.3f” % 1.12345) # Prints 1.123

EX E R c | S E T | M E | Hello from the other side.

